Duality Principles for Fully Non- linear Elliptic Equations

نویسنده

  • Diogo Aguiar Gomes
چکیده

In this paper we use duality theory to associate certain measures to fully-nonlinear elliptic equations. These measures are the natural extension of the Mather measures to controlled stochastic processes and associated second-order elliptic equations. We apply these ideas to prove new a-priori estimates for smooth solutions of fully nonlinear elliptic equations. Supported in part by FCT/POCTI/FEDER Departamento de Matemática, Instituto Superior Técnico Av. Rovisco Pais 1049-001 Lisboa, Portugal email:[email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Estimates for Parabolic Problems via Elliptic Reconstruction and Duality

We use the elliptic reconstruction technique in combination with a duality approach to prove a posteriori error estimates for fully discrete backward Euler scheme for linear parabolic equations. As an application, we combine our result with the residual based estimators from the a posteriori estimation for elliptic problems to derive space-error estimators and thus a fully practical version of ...

متن کامل

Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations

In this paper, we study fully non-linear elliptic equations in nondivergence form which can be degenerate or singular when “the gradient is small”. Typical examples are either equations involving the m-Laplace operator or Bellman-Isaacs equations from stochastic control problems. We establish an Alexandroff-Bakelman-Pucci estimate and we prove a Harnack inequality for viscosity solutions of suc...

متن کامل

Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate fully non-linear elliptic equations

In this paper, we study fully non-linear elliptic equations in nondivergence form which can be degenerate when “the gradient is small”. Typical examples are either equations involving the m-Laplace operator or BellmanIsaacs equations from stochastic control problems. We establish an AlexandroffBakelman-Pucci estimate and we prove a Harnack inequality for viscosity solutions of such degenerate e...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Positive solution of non-square fully Fuzzy linear system of equation in general form using least square method

In this paper, we propose the least-squares method for computing the positive solution of a $mtimes n$ fully fuzzy linear system (FFLS) of equations, where $m > n$, based on Kaffman's arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the fuzzy number vector solution of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004